Copied to
clipboard

G = C327D20order 360 = 23·32·5

2nd semidirect product of C32 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial

Aliases: C327D20, C30.13D6, (C3×C15)⋊8D4, (C6×D5)⋊2S3, C3⋊Dic31D5, C6.20(S3×D5), D102(C3⋊S3), C152(C3⋊D4), C32(C3⋊D20), (C3×C6).24D10, C51(C327D4), (C3×C30).12C22, (D5×C3×C6)⋊4C2, C2.5(D5×C3⋊S3), (C2×C3⋊D15)⋊3C2, C10.5(C2×C3⋊S3), (C5×C3⋊Dic3)⋊3C2, SmallGroup(360,69)

Series: Derived Chief Lower central Upper central

C1C3×C30 — C327D20
C1C5C15C3×C15C3×C30D5×C3×C6 — C327D20
C3×C15C3×C30 — C327D20
C1C2

Generators and relations for C327D20
 G = < a,b,c,d | a3=b3=c20=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 704 in 96 conjugacy classes, 34 normal (14 characteristic)
C1, C2, C2, C3, C4, C22, C5, S3, C6, C6, D4, C32, D5, C10, Dic3, D6, C2×C6, C15, C3⋊S3, C3×C6, C3×C6, C20, D10, D10, C3⋊D4, C3×D5, D15, C30, C3⋊Dic3, C2×C3⋊S3, C62, D20, C3×C15, C5×Dic3, C6×D5, D30, C327D4, C32×D5, C3⋊D15, C3×C30, C3⋊D20, C5×C3⋊Dic3, D5×C3×C6, C2×C3⋊D15, C327D20
Quotients: C1, C2, C22, S3, D4, D5, D6, C3⋊S3, D10, C3⋊D4, C2×C3⋊S3, D20, S3×D5, C327D4, C3⋊D20, D5×C3⋊S3, C327D20

Smallest permutation representation of C327D20
On 180 points
Generators in S180
(1 68 119)(2 120 69)(3 70 101)(4 102 71)(5 72 103)(6 104 73)(7 74 105)(8 106 75)(9 76 107)(10 108 77)(11 78 109)(12 110 79)(13 80 111)(14 112 61)(15 62 113)(16 114 63)(17 64 115)(18 116 65)(19 66 117)(20 118 67)(21 90 141)(22 142 91)(23 92 143)(24 144 93)(25 94 145)(26 146 95)(27 96 147)(28 148 97)(29 98 149)(30 150 99)(31 100 151)(32 152 81)(33 82 153)(34 154 83)(35 84 155)(36 156 85)(37 86 157)(38 158 87)(39 88 159)(40 160 89)(41 138 165)(42 166 139)(43 140 167)(44 168 121)(45 122 169)(46 170 123)(47 124 171)(48 172 125)(49 126 173)(50 174 127)(51 128 175)(52 176 129)(53 130 177)(54 178 131)(55 132 179)(56 180 133)(57 134 161)(58 162 135)(59 136 163)(60 164 137)
(1 123 86)(2 87 124)(3 125 88)(4 89 126)(5 127 90)(6 91 128)(7 129 92)(8 93 130)(9 131 94)(10 95 132)(11 133 96)(12 97 134)(13 135 98)(14 99 136)(15 137 100)(16 81 138)(17 139 82)(18 83 140)(19 121 84)(20 85 122)(21 103 174)(22 175 104)(23 105 176)(24 177 106)(25 107 178)(26 179 108)(27 109 180)(28 161 110)(29 111 162)(30 163 112)(31 113 164)(32 165 114)(33 115 166)(34 167 116)(35 117 168)(36 169 118)(37 119 170)(38 171 120)(39 101 172)(40 173 102)(41 63 152)(42 153 64)(43 65 154)(44 155 66)(45 67 156)(46 157 68)(47 69 158)(48 159 70)(49 71 160)(50 141 72)(51 73 142)(52 143 74)(53 75 144)(54 145 76)(55 77 146)(56 147 78)(57 79 148)(58 149 80)(59 61 150)(60 151 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 50)(28 49)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 60)(38 59)(39 58)(40 57)(61 120)(62 119)(63 118)(64 117)(65 116)(66 115)(67 114)(68 113)(69 112)(70 111)(71 110)(72 109)(73 108)(74 107)(75 106)(76 105)(77 104)(78 103)(79 102)(80 101)(81 122)(82 121)(83 140)(84 139)(85 138)(86 137)(87 136)(88 135)(89 134)(90 133)(91 132)(92 131)(93 130)(94 129)(95 128)(96 127)(97 126)(98 125)(99 124)(100 123)(141 180)(142 179)(143 178)(144 177)(145 176)(146 175)(147 174)(148 173)(149 172)(150 171)(151 170)(152 169)(153 168)(154 167)(155 166)(156 165)(157 164)(158 163)(159 162)(160 161)

G:=sub<Sym(180)| (1,68,119)(2,120,69)(3,70,101)(4,102,71)(5,72,103)(6,104,73)(7,74,105)(8,106,75)(9,76,107)(10,108,77)(11,78,109)(12,110,79)(13,80,111)(14,112,61)(15,62,113)(16,114,63)(17,64,115)(18,116,65)(19,66,117)(20,118,67)(21,90,141)(22,142,91)(23,92,143)(24,144,93)(25,94,145)(26,146,95)(27,96,147)(28,148,97)(29,98,149)(30,150,99)(31,100,151)(32,152,81)(33,82,153)(34,154,83)(35,84,155)(36,156,85)(37,86,157)(38,158,87)(39,88,159)(40,160,89)(41,138,165)(42,166,139)(43,140,167)(44,168,121)(45,122,169)(46,170,123)(47,124,171)(48,172,125)(49,126,173)(50,174,127)(51,128,175)(52,176,129)(53,130,177)(54,178,131)(55,132,179)(56,180,133)(57,134,161)(58,162,135)(59,136,163)(60,164,137), (1,123,86)(2,87,124)(3,125,88)(4,89,126)(5,127,90)(6,91,128)(7,129,92)(8,93,130)(9,131,94)(10,95,132)(11,133,96)(12,97,134)(13,135,98)(14,99,136)(15,137,100)(16,81,138)(17,139,82)(18,83,140)(19,121,84)(20,85,122)(21,103,174)(22,175,104)(23,105,176)(24,177,106)(25,107,178)(26,179,108)(27,109,180)(28,161,110)(29,111,162)(30,163,112)(31,113,164)(32,165,114)(33,115,166)(34,167,116)(35,117,168)(36,169,118)(37,119,170)(38,171,120)(39,101,172)(40,173,102)(41,63,152)(42,153,64)(43,65,154)(44,155,66)(45,67,156)(46,157,68)(47,69,158)(48,159,70)(49,71,160)(50,141,72)(51,73,142)(52,143,74)(53,75,144)(54,145,76)(55,77,146)(56,147,78)(57,79,148)(58,149,80)(59,61,150)(60,151,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,60)(38,59)(39,58)(40,57)(61,120)(62,119)(63,118)(64,117)(65,116)(66,115)(67,114)(68,113)(69,112)(70,111)(71,110)(72,109)(73,108)(74,107)(75,106)(76,105)(77,104)(78,103)(79,102)(80,101)(81,122)(82,121)(83,140)(84,139)(85,138)(86,137)(87,136)(88,135)(89,134)(90,133)(91,132)(92,131)(93,130)(94,129)(95,128)(96,127)(97,126)(98,125)(99,124)(100,123)(141,180)(142,179)(143,178)(144,177)(145,176)(146,175)(147,174)(148,173)(149,172)(150,171)(151,170)(152,169)(153,168)(154,167)(155,166)(156,165)(157,164)(158,163)(159,162)(160,161)>;

G:=Group( (1,68,119)(2,120,69)(3,70,101)(4,102,71)(5,72,103)(6,104,73)(7,74,105)(8,106,75)(9,76,107)(10,108,77)(11,78,109)(12,110,79)(13,80,111)(14,112,61)(15,62,113)(16,114,63)(17,64,115)(18,116,65)(19,66,117)(20,118,67)(21,90,141)(22,142,91)(23,92,143)(24,144,93)(25,94,145)(26,146,95)(27,96,147)(28,148,97)(29,98,149)(30,150,99)(31,100,151)(32,152,81)(33,82,153)(34,154,83)(35,84,155)(36,156,85)(37,86,157)(38,158,87)(39,88,159)(40,160,89)(41,138,165)(42,166,139)(43,140,167)(44,168,121)(45,122,169)(46,170,123)(47,124,171)(48,172,125)(49,126,173)(50,174,127)(51,128,175)(52,176,129)(53,130,177)(54,178,131)(55,132,179)(56,180,133)(57,134,161)(58,162,135)(59,136,163)(60,164,137), (1,123,86)(2,87,124)(3,125,88)(4,89,126)(5,127,90)(6,91,128)(7,129,92)(8,93,130)(9,131,94)(10,95,132)(11,133,96)(12,97,134)(13,135,98)(14,99,136)(15,137,100)(16,81,138)(17,139,82)(18,83,140)(19,121,84)(20,85,122)(21,103,174)(22,175,104)(23,105,176)(24,177,106)(25,107,178)(26,179,108)(27,109,180)(28,161,110)(29,111,162)(30,163,112)(31,113,164)(32,165,114)(33,115,166)(34,167,116)(35,117,168)(36,169,118)(37,119,170)(38,171,120)(39,101,172)(40,173,102)(41,63,152)(42,153,64)(43,65,154)(44,155,66)(45,67,156)(46,157,68)(47,69,158)(48,159,70)(49,71,160)(50,141,72)(51,73,142)(52,143,74)(53,75,144)(54,145,76)(55,77,146)(56,147,78)(57,79,148)(58,149,80)(59,61,150)(60,151,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,60)(38,59)(39,58)(40,57)(61,120)(62,119)(63,118)(64,117)(65,116)(66,115)(67,114)(68,113)(69,112)(70,111)(71,110)(72,109)(73,108)(74,107)(75,106)(76,105)(77,104)(78,103)(79,102)(80,101)(81,122)(82,121)(83,140)(84,139)(85,138)(86,137)(87,136)(88,135)(89,134)(90,133)(91,132)(92,131)(93,130)(94,129)(95,128)(96,127)(97,126)(98,125)(99,124)(100,123)(141,180)(142,179)(143,178)(144,177)(145,176)(146,175)(147,174)(148,173)(149,172)(150,171)(151,170)(152,169)(153,168)(154,167)(155,166)(156,165)(157,164)(158,163)(159,162)(160,161) );

G=PermutationGroup([[(1,68,119),(2,120,69),(3,70,101),(4,102,71),(5,72,103),(6,104,73),(7,74,105),(8,106,75),(9,76,107),(10,108,77),(11,78,109),(12,110,79),(13,80,111),(14,112,61),(15,62,113),(16,114,63),(17,64,115),(18,116,65),(19,66,117),(20,118,67),(21,90,141),(22,142,91),(23,92,143),(24,144,93),(25,94,145),(26,146,95),(27,96,147),(28,148,97),(29,98,149),(30,150,99),(31,100,151),(32,152,81),(33,82,153),(34,154,83),(35,84,155),(36,156,85),(37,86,157),(38,158,87),(39,88,159),(40,160,89),(41,138,165),(42,166,139),(43,140,167),(44,168,121),(45,122,169),(46,170,123),(47,124,171),(48,172,125),(49,126,173),(50,174,127),(51,128,175),(52,176,129),(53,130,177),(54,178,131),(55,132,179),(56,180,133),(57,134,161),(58,162,135),(59,136,163),(60,164,137)], [(1,123,86),(2,87,124),(3,125,88),(4,89,126),(5,127,90),(6,91,128),(7,129,92),(8,93,130),(9,131,94),(10,95,132),(11,133,96),(12,97,134),(13,135,98),(14,99,136),(15,137,100),(16,81,138),(17,139,82),(18,83,140),(19,121,84),(20,85,122),(21,103,174),(22,175,104),(23,105,176),(24,177,106),(25,107,178),(26,179,108),(27,109,180),(28,161,110),(29,111,162),(30,163,112),(31,113,164),(32,165,114),(33,115,166),(34,167,116),(35,117,168),(36,169,118),(37,119,170),(38,171,120),(39,101,172),(40,173,102),(41,63,152),(42,153,64),(43,65,154),(44,155,66),(45,67,156),(46,157,68),(47,69,158),(48,159,70),(49,71,160),(50,141,72),(51,73,142),(52,143,74),(53,75,144),(54,145,76),(55,77,146),(56,147,78),(57,79,148),(58,149,80),(59,61,150),(60,151,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,50),(28,49),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,60),(38,59),(39,58),(40,57),(61,120),(62,119),(63,118),(64,117),(65,116),(66,115),(67,114),(68,113),(69,112),(70,111),(71,110),(72,109),(73,108),(74,107),(75,106),(76,105),(77,104),(78,103),(79,102),(80,101),(81,122),(82,121),(83,140),(84,139),(85,138),(86,137),(87,136),(88,135),(89,134),(90,133),(91,132),(92,131),(93,130),(94,129),(95,128),(96,127),(97,126),(98,125),(99,124),(100,123),(141,180),(142,179),(143,178),(144,177),(145,176),(146,175),(147,174),(148,173),(149,172),(150,171),(151,170),(152,169),(153,168),(154,167),(155,166),(156,165),(157,164),(158,163),(159,162),(160,161)]])

45 conjugacy classes

class 1 2A2B2C3A3B3C3D 4 5A5B6A6B6C6D6E···6L10A10B15A···15H20A20B20C20D30A···30H
order1222333345566666···6101015···152020202030···30
size11109022221822222210···10224···4181818184···4

45 irreducible representations

dim1111222222244
type++++++++++++
imageC1C2C2C2S3D4D5D6D10C3⋊D4D20S3×D5C3⋊D20
kernelC327D20C5×C3⋊Dic3D5×C3×C6C2×C3⋊D15C6×D5C3×C15C3⋊Dic3C30C3×C6C15C32C6C3
# reps1111412428488

Matrix representation of C327D20 in GL6(𝔽61)

010000
60600000
0014100
00525900
000010
000001
,
100000
010000
00592000
009100
000010
000001
,
52430000
5290000
0060000
009100
0000431
0000600
,
6000000
110000
0060000
009100
0000143
0000060

G:=sub<GL(6,GF(61))| [0,60,0,0,0,0,1,60,0,0,0,0,0,0,1,52,0,0,0,0,41,59,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,59,9,0,0,0,0,20,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[52,52,0,0,0,0,43,9,0,0,0,0,0,0,60,9,0,0,0,0,0,1,0,0,0,0,0,0,43,60,0,0,0,0,1,0],[60,1,0,0,0,0,0,1,0,0,0,0,0,0,60,9,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,43,60] >;

C327D20 in GAP, Magma, Sage, TeX

C_3^2\rtimes_7D_{20}
% in TeX

G:=Group("C3^2:7D20");
// GroupNames label

G:=SmallGroup(360,69);
// by ID

G=gap.SmallGroup(360,69);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,73,31,201,730,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^20=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽